Merging C-H activation and sulfoxides to design new stereoselective scaffolds

Professor Françoise Colobert Synthesis and asymmetric catalysis (SYNCAT), Université de Strasbourg

Over the decades, non-activated C-H bonds have been considered as dormant functionalities, hardly exploitable in the context of multistep synthesis of complex scaffolds. However, since few years, the C-H activation of arenes, and more recently alkanes, expanded tremendously. Nevertheless general strategies giving access to a large panel of stereogenic molecules are still missing. Following this objective we have recently developed an asymmetric C-H activation pathway to build up very efficiently an unlimited panel of atropisomerically pure biaryls. This concept involves direct, Pd-catalyzed functionalization of the biaryl precursors bearing a sulfoxide moiety. The stereogenic sulfoxide plays a role of both, directing group and chiral auxiliary, hence allowing the atroposelective C-H activation and subsequent functionalization with an array of coupling partners (C-C, C-O, C-X bond formation).¹ Recently we have also discovered that sulfoxide may be efficiently applied in the context of unprecedented atroposelective C-N couplings.² Furthermore, the traceless character of the sulfoxide moiety permits various post-modifications of the newly generated axially chiral compounds.

Then we endeavoured new strategies for the diastereoselective $C(sp^3)$ -H functionalisation, using an original directing group, (S)-2-(para-tolylsulfinyl)aniline, allowing various

transformations, such as arylation or challenging olefination. Afterwards, targeting enantioselective transformations, we developed a new ligand, N-((S)-1-(4-(*tert*-butyl)phenyl)-2-((R)-para

tolylsulfinyl)ethyl)acetamide, that turned out to be a highly efficient chiral inductor for the direct functionalisation of cycloalkanes.³

¹ a) Q. Dherbassy, G. Schwertz, M. Chessé, C. K. Hazra, J. Wencel-Delord, F. Colobert, *Chem. Eur. J.* **2016**, *22*, 1735 ; b) C. K. Hazra, Q. Dherbassy, J. Wencel-Delord, F. Colobert, *Angew. Chem. Int. Ed.* **2014**, *53*, 13871. c) Q. Dherbassy, J. Wencel-Delord, F. Colobert, *Tetrahedron* 2016, *72*, 5238–5245. (d) Dherbassy, Q. ; Djukic, J-P.; Wencel-Delord, J. ; Colobert, F. *Angew. Chem. Int. Ed.* **2018**, *57*, 4668-4672. e) Dherbassy, Q. ; Djukic, J-P.; Wencel-Delord, J. ; Colobert, F. *Nature*, research highlight, April 10 **2018**. f) Meidlinger, D. ; Marx, L. ; Bordeianu, C. ; Choppin, S. ; Colobert, F. ; Speicher, A. *Angew. Chem. Int. Ed.* **2018**, *57*, 9160 –9164.

² Rae, J.; Frey, J.; Choppin, S.; Wencel-Delord, J. ; Colobert, F. *ACS Cat.* **2018**, *8*, 2805-2809.

³ a) S. Jerhaoui, F. Chahdoura, C. Rose, J-P. Djukic, J. Wencel-Delord, F. Colobert, F. *Chem. Eur. J.* **2016**, *22*, 17397. b) S. Jerhaoui, J-P. Djukic, J. Wencel-Delord, F. Colobert, F. *Chem. Eur. J.* **2017**, *23*, 15594. c) S. Jerhaoui, P. Poutrel, J-P. Djukic, J. Wencel-Delord, F. Colobert, F. *Org. Chem. Front.*, **2018**, *5*, 409.